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ABSTRACT

A wealth of information on metabolic parameters of
a species can be inferred from observations on spe-
cies that are phylogenetically related. Phylogeny-
based information can complement direct empirical
evidence, and is particularly valuable if experiments
on the species of interest are not feasible. The
PhyloPars web server provides a statistically con-
sistent method that combines an incomplete set of
empirical observations with the species phylogeny
to produce a complete set of parameter estimates
for all species. It builds upon a state-of-the-art evo-
lutionary model, extended with the ability to handle
missing data. The resulting approach makes optimal
use of all available information to produce estimates
that can be an order of magnitude more accurate
than ad-hoc alternatives. Uploading a phylogeny
and incomplete feature matrix suffices to obtain
estimates of all missing values, along with a
measure of certainty. Real-time cross-validation
provides further insight in the accuracy and bias
expected for estimated values. The server allows
for easy, efficient estimation of metabolic para-
meters, which can benefit a wide range of fields
including systems biology and ecology. PhyloPars
is available at: http://www.ibi.vu.nl/programs/
phylopars/.

INTRODUCTION

Quantitative predictions on the behavior of organisms,
populations and ecosystems require accurate values for
the metabolic parameters associated with cellular and
physiological processes. These parameters range from
the substrate affinities, processing rates and yield coeffi-
cients of single enzyme-mediated chemical reactions, to
the growth rate and maintenance requirement of individ-
ual organisms or populations. Ideally, such parameters are
measured directly by observing the species (or strain) of

interest in experiments. However, this can be a costly,
time-consuming and difficult process. It may even be
impossible: many species that play key roles in nature
have never been successfully kept in culture or captivity.
In such contexts, methods that exploit alternative infor-
mation sources to estimate parameter values can be very
valuable. One such source of information is found in
direct observations on phylogenetically related species:
given that evolution changes most features gradually
over time, two species that separated recently in evolution-
ary history would be expected to behave similarly. The
best estimate for a metabolic parameter could thus be
derived from observations on related species.
Intuitively, one might expect that the best estimate for

a missing parameter is given by the observed value of
the most closely related species available. Certainly, evo-
lutionary models generally agree that the best estimate
for the parameter of a species is given by the closest
node possible: the true parameter value of its parent in
the phylogeny (1). However, this value is usually
unknown. First, the parent may be extinct, in which case
we can only obtain indirect information on its original
parameter value by sampling descendants. Second, most
observations are samples subject to measurement error,
rather than perfect measurements of the true value.
Therefore, any empirically available estimate of the
parent value is subject to error. We can reduce this error
by considering more distantly related species in the phy-
logeny: every sampled species in the phylogeny tells a little
about the possible value of the missing parameter. An
optimal reconstruction of the parameter value thus com-
bines observations throughout the phylogeny, weighed
according to phylogenetic proximity. This is a dominant
idea in comparative feature analysis (2,3) and ancestral
state reconstruction (4–6), and occasionally surfaces in
other applications such as sequence alignment (7,8) and
comparative sequence analysis (9).
Another source of information on the value of an miss-

ing parameter may be found in other observations on the
species of interest: its other features may tell a lot about
the missing value. A prime example is the maximum body
size of species, which is commonly associated with a

*To whom correspondence should be addressed. Tel: +31 20 5986959; Fax: +31 20 5987123; Email: jorn.bruggeman@falw.vu.nl

� 2009 The Author(s)
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.



plethora of features through theory for metabolic organi-
zation (10) and empirical allometric scaling laws (11).
A good indication of the value of certain metabolic
parameters could therefore be given by the size of the
species, or in fact any observed parameter that is known
to correlate with the feature of interest. It is tempting to
identify and use such correlations directly through regres-
sion analysis applied to observations across species.
However, such observations are not independent due to
interspecific phylogenetic relationships, leading to overes-
timation of the correlations (3). Information on parameter
correlations can provide a valuable aid for reconstructing
missing parameter values, but strikingly, their identifica-
tion and use again requires a phylogeny-aware analysis.
The PhyloPars web server offers an efficient, statistically

consistent method that exploits both phylogenetic rela-
tionships and parameter correlations to estimate missing
parameters of the species within a phylogeny (Figure 1).
It builds upon a state-of-the-art model (12,13) that addi-
tionally accounts for intraspecific variability and measure-
ment error. This model is extended to handle missing data.
The resulting approach makes optimal use of all available
observations to produce estimates that can be an order of
magnitude more accurate than ad-hoc alternatives.

Underlying model

PhyloPars operates on a phylogeny and an incomplete
feature matrix that describes the available observations
on one or more continuous features (e.g. metabolic para-
meters), for subsets of nodes (species or strains) that may
fully or partially overlap. The phylogeny is assumed to be
known in terms of both topology and branch lengths; the

latter are assumed to be proportional to evolutionary
time.

Phylogenetic variability

The role of the phylogeny is represented by a ‘Brownian
motion’ phylogenetic model that assumes feature values
change through genetic drift (1,2,9,12,14). A consequence
of the model is that all feature values for all nodes com-
bined can be described by a single multivariate normal
distribution. The covariances of the distribution depend
on the topology and branch lengths of the phylogeny,
and on the rates and correlations of the evolution of
the different features. These rates and correlations are
described by N(N+1)/2 ‘phylogenetic’ covariances (12),
with N denoting the number of features. They are easily
transformed into more readily interpretable phylogenetic
regression slopes (15,16) and phylogenetic correlations
(12). It is worth noting that the term ‘phylogenetic corre-
lation’ has been used to describe different concepts (12,17);
we follow Felsenstein in using it exclusively to refer to
joint evolution of a pair of features.

Phenotypic variability

The phylogenetic model is extended to account for
phenotypic variability: the fact that a single sample is
not necessarily the mean of the species under study
(12,13). Such variability may be due to measurement
error or to intraspecific variation of the feature. It can
be incorporated in the phylogenetic model by introducing
a layer of variability between the species level and the
observation, effectively behaving as extension of the
evolutionary path (12). This is comparable to the role of
non-heritable residual variability in phylogenetic mixed
models (2,18).

We assume that observed correlations between features
are exclusively due to evolutionary processes (and not,
for instance, to the measurement process itself). This facil-
itates extending the model with the ability to use incom-
plete observations, i.e. observations on a species that
include only a subset of all features. As observations
may originate from different sources, with sets of observed
species per feature not necessarily overlapping, this func-
tionality is indispensable for many purposes. Phenotypic
variability is assumed equal for all species (but can differ
between features), and is described by N unknown ‘phe-
notypic’ variances (12). It may be noted that this differs
from the approach taken by Ives et al. (13), who permit
phenotypic variability to differ between species (as well as
between features); values for the phenotypic variability are
there prescribed rather than estimated.

Procedure

Both the phylogenetic covariances and the phenotypic
variances are initially unknown and need to be estimated
from the input data in order to reconstruct missing fea-
ture values. This is typically done through maximum
likelihood estimation (MLE) (2,12–14).

With the phylogenetic and phenotypic covariances
known, estimation of missing parameters is straight-
forward: the optimal phylogenetic and phenotypic
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Figure 1. An example of a phylogenetic tree with five species (A–E),
two features (red and blue numbers) and one missing value (question
mark). PhyloPars reconstructs the missing value from the other
observed values of that feature (red numbers) weighed according to
phylogenetic proximity, and additionally involves the observed value
of the other feature (blue value 5) through its estimate of the phyloge-
netic correlation between the two features. This estimate is in turn
based on all observations. Simple ad-hoc approaches typically do not
make such complete use of available information: they use the average
of the other observed feature values (red numbers only) as estimate
(‘mean model’), or insert the phylogenetically nearest observed value:
the value 1 observed for species D (‘nearest neighbor model’).
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covariances are first combined with the tree topology to
calculate the covariances between the observations and the
missing values. These are subsequently used to express the
estimate of each missing value as the product of all original
observations and an estimate-specific set of associated
weights (formally: regression coefficients).

In order to assess the validity of the model result, one
can additionally perform cross-validation: each observed
parameter is excluded from the input data, and then
re-estimated with the MLE-derived phylogenetic and phe-
notypic covariances to determine prediction error and
bias.

WEB SERVER IMPLEMENTATION

Input

The web server accepts an uploaded phylogeny in Newick
format (http://evolution.genetics.washington.edu/phylip/
newicktree.html) and a feature matrix with observations
as tab-separated text file. The latter can contain missing
values. If there is good evidence that either phylogenetic
correlations or phenotypic variability are absent in the
input dataset, the user can additionally disable correlated
evolution of features (phylogenetic correlations will be set
to zero) or phenotypic variability (phenotypic variances
will be set to zero), respectively. This restricts the freedom
of the model and will then correctly decrease the uncer-
tainty associated with estimated missing values.

Processing

The web server first constructs the full multivariate normal
model that specifies the likelihood of observing the pro-
vided feature matrix, given the phylogeny, phylogenetic
covariances and phenotypic variances. The covariance
matrix of the model combines phylogenetic and phenoty-
pic components in such a way that analytic calculation
of the optimal phylogenetic and phenotypic covariances
is not possible (12,13). Therefore, we resort to iterative
numerical maximization of the likelihood. Phylogenetic
and phenotypic covariances are first transformed into
a set of unbounded parameters through log Cholesky
parameterization (19); this permits unconstrained optimi-
zation. The likelihood is then maximized with the
Broyden-Fletcher-Goldfarb-Shanno algorithm (20).

All processing logic is implemented in Python (http://
www.python.org). For optimization and advanced linear
algebra we use SciPy (http://www.scipy.org), which in turn
encapsulates LAPACK (21). All output plots are gener-
ated with MatPlotLib (http://matplotlib.sourceforge.net).
A mathematical description of the methodology is pro-
vided as online Supplementary Data. Total processing
time depends on the number of features and nodes
under study; a test case with 242 nodes, 6 features and
289 observations is processed in under 3min.

WORKED EXAMPLE

We have applied the PhyloPars method to an extensive
database of freshwater phytoplankton parameters.
Phytoplankton represents the lowest tropic level in aquatic

food webs, and as such govern processes on all scales:
from small lakes to the global climate. Their influence
is hard to quantify as many plankton species cannot be
cultured. This therefore presents an ideal test case for the
PhyloPars approach.
The dataset was compiled by J.B. from 38 literature

sources and contains over one thousand measurements
on 12 different features of 114 species. For the present
study we have selected a subset of features: cell length,
diameter, surface area, volume, maximum growth rate
and phosphate affinity. It may be obvious that the first
four features all describe aspects of cell size, and are
likely to be positively correlated. Their joint inclusion is
intentional: it demonstrates the ability of PhyloPars to
uncover and exploit correlations between features.
To our knowledge, there does not exist a complete phy-

toplankton phylogeny based on molecular evidence.
Therefore, we resort to using the Linnaean taxonomy
with branch lengths of 1 between ranks. While this is
undoubtedly a very crude approximation to the topology
and branch lengths of the true phylogeny, other work
indicates that even such qualitative phylogenies can con-
tribute information on feature evolution (22).
The sample feature matrix contains a total of 289

observed values for a total of 242 phylogenetic groups
(species and ancestors), leaving 1163 missing values.
Both the feature matrix and phylogeny are available at
the PhyloPars home page. Results obtained with default
settings are shown in Figure 2.

Phylogenetic and phenotypic variability

In the first section of its results (Figure 2A), PhyloPars
presents maximum likelihood estimates for the phyloge-
netic and phenotypic variability. Phylogenetic standard
deviations provide a measure of the rate of feature evolu-
tion. Phenotypic standard deviations quantify the variabil-
ity due to measurement error and/or intraspecific
variation. The proportion of variance accounted for by
the phylogeny is also presented, and may be used to com-
pare phylogenetic and phenotypic contributions to the
total observed variability (18). This proportion usually
includes a contribution by natural selection (23); further
analyses (24,25) might be used to disentangle phylogenetic
and selection components. For reference, the table also
lists a summary of cross-validation results (see below).
Finally, phylogenetic correlations are shown; these indi-
cate if pairs of features are likely to co-evolve.
For the phytoplankton example phylogenetic vari-

ability clearly plays an important role: the phylogeny
explains more than 50% of the total variability of all fea-
tures. It is also apparent that PhyloPars correctly recog-
nizes likely correlations between features: correlations
between length, diameter, surface area and volume all
exceed 0.5.

Estimates for missing values

In the second result section (Figure 2B), estimates for
all features of all nodes are presented in one single ‘sup-
plemented’ feature matrix. Feature values that are also
present in the input data as observation are indicated by
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Figure 2. Output of the PhyloPars web server consists of three sections: (A) estimates for phylogenetic and phenotypic variability, (B) estimates for
missing parameter values, and (D) cross-validation details. Individual parameter estimates can be clicked to obtain a detailed report in a pop-up
window; an example for the maximum growth rate of Chroococcus is shown in (C).
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a trailing asterisk. It is worth noting that the estimated
value of a parameter may differ from its original observa-
tion when phenotypic variability is allowed: in that case
the observation is a single sample, whereas the supplemen-
ted feature matrix lists the expected (mean) value for the
representative species. The supplemented feature matrix is
also available as a downloadable tab-separated text file.

Clicking on a value in the supplemented feature matrix
opens a detailed report (Figure 2C) that visualizes the
contributions of all observations to the point estimate
(black vertical bars and blue area). Additionally, it pre-
sents the standard deviation of the estimate. Together the
point estimate and standard deviation specify the marginal
likelihood of the estimated value (a normal distribution),
plotted as a red curve.

Results for the example clearly demonstrate that esti-
mates generally differ even for closely related species (e.g.
Anabaena sp.)—this is a direct result of the PhyloPars
capability to include observations on other features in its
estimates through phylogenetic correlations.

Cross-validation

In the last result section (Figure 2D), detailed cross vali-
dation reports are presented. These visualize the distribu-
tion of estimation errors, i.e. the differences between
observations and their estimates in cross-validation.
Error distributions are also plotted for two simple ad-
hoc models: a mean model that assumes the best estimate
for a missing value is given by the mean of all observations
(valid if phylogenetic variability is absent), and a nearest
neighbor model that assumes the best estimate for a
missing value is given by the phylogenetically closest
observation (a common method of estimating unknown
parameters). These allow the user to judge the improve-
ment of the PhyloPars model over the ad-hoc models.
Values are also presented for the expected bias (the
mean of all differences between estimates and observations
in cross-validation), and the expected error (the mean of
all absolute differences). These provide an indication of the
accuracy of the estimates for missing values.

For the example, neither of the ad-hoc models has
a definite advantage over the other, and the PhyloPars
evolutionary model always improves upon both. This
improvement can be very large: the mean error in the esti-
mate for cell surface area is 25% compared to over 300%
for the ad-hoc models. Additionally, the bias of the
PhyloPars model is near zero for all features: a definite
improvement over the nearest neighbor model (the mean
model has no bias by definition, but its errors are rela-
tively large).

DISCUSSION AND CONCLUSION

PhyloPars delivers estimates of missing feature values that
can be an order of magnitude more accurate than those of
ad-hoc alternatives. The maximum precision achievable
depends in part on the accuracy of the topology and
branch lengths of the user-supplied phylogeny. For a
limited number of species, accurate phylogenies based on
molecular evidence are available. For instance, TreeFam

(26) and Pfam (27) offer phylogenetic trees based on gene
and protein similarity, respectively. Branch lengths can
then to some extent be expected to represent evolutionary
time. If a detailed phylogeny is not available for the spe-
cies of interest, a qualitative tree derived from resources
such as the NCBI taxonomy (28) could be used instead.
The worked example demonstrates convincingly that even
a taxonomy-based phylogeny with arbitrary branch
lengths allows PhyloPars to improve considerably upon
alternative models.
A valid concern is to what extent the accuracy of

PhyloPars predictions depends on the underlying
‘Brownian motion’ evolutionary model. It has been
argued that this model overemphasizes the randomness
of evolutionary change, at the expense of directional
change due to natural selection (23). Not surprisingly, sev-
eral alternative models of evolution have been proposed
(17,29). However, the mathematical framework that
underpins the Brownian motion model can be motivated
independently on first-principle statistical grounds (15,30).
Accordingly, the model has been shown to deliver accu-
rate predictions even for data generated with alternative
evolutionary models (31). If no detailed information is
available on the processes that governed evolutionary
change, the Brownian motion model provides a robust
base model for phylogenetic analyses.
Within the context of the Brownian motion evolution-

ary model, the best estimate for a feature is given by that
of its parent in the phylogeny. Estimating missing feature
values thus equates to reconstructing ancestral states.
Several stand-alone applications are capable of this, e.g.
Pagel’s BayesTraits (http://www.evolution.reading.ac.uk),
Swofford’s PAUP (http://paup.csit.fsu.edu), and Mesquite
with the PDAP:PDTREE package (http://mesquiteprojec-
t.org). However, none of these applications incorporates
phenotypic variability of features, which plays an impor-
tant role in practice (12,13), and several do not accept
datasets with missing values or cannot process these reli-
ably. The ‘contrast’ program in Felsenstein’s PHYLIP
(http://evolution.genetics.washington.edu/phylip.html)
deserves special mention, as it performs all preprocessing
needed for subsequent ancestral state reconstruction and
can handle phenotypic variability. However, it again does
not permit missing values, which for our example would
imply that only 18 out of 289 observations (3 species out
of 114) could be used.
To our knowledge there does not exist a stand-alone or

web application that offers a straightforward means of
performing the complex task of phylogeny-based recon-
struction of missing parameter values, comparable in ease
of use and visual support to that offered by the PhyloPars
web server. PhyloPars for the first time discloses valuable,
theoretically advanced methods from evolutionary biol-
ogy to experimentalists and modelers alike. Its results
can serve several purposes: (i) estimates may be used
directly to predict the behavior of species, populations
or ecosystems, (ii) quantitative models can use
PhyloPars predictions to supplement existing knowledge,
either by directly incorporating a subset of its estimates or
by using the predicted marginal likelihood as prior distri-
bution in Bayesian context, (iii) estimates can aid
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experimental design by providing a prior indication of the
feasible range for metabolic parameters. We feel that such
functionality may benefit a wide range of fields, including
ecology and systems biology.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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